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The simple network thermodynamics approach is applied to chemical reaction systems, whereby 
chemical reactions can be studied avoiding complex mathematical treatment. Steady state reaction 
rates are obtained for two chemical reaction systems, viz. the decomposition of ozone and the 
reaction of hydrogen with bromine. The rate equations so obtained agree with those derived 
from the chemical kinetics concept. 

This paper deals with the application of the network thermodynamics method to 
chemical reaction systems. By the network thermodynamics formalism developed 
by Peusner1 and Oster and coworkers2 •3 , non-equilibrium thermodynamics can be 
treated within the framework of dynamical system theory, thereby combining dy­
namic and topological analysis into a single effective tool. In this approach, any system 
or process is first handled as a black box with flows and forces as the inputs and 
outputs (a port). This black box is then reticulated step by step according to the data 
obtainable experimentally and the kind of informa,tion one wishes to gain. The 
reticulated system is represented by a bond-graph or a linear graph. In this manner, 
the system topology, which cannot be derived by methods conventionally employed 
for the analysis of chemical and biological systems, is obtained, As the dynamical 
equations, linear or nonlinear, can be generated algorithmically from the network 
graph, the well-elaborated methods of circuit analysis can be then employed to obtain 
the dynamical characteristics directly from the graph. The network approach is 
particularly well suited to the phenomenological description of the highly complex 
biological systems4 and for the study of structures involving simpler processes, which 
otherwise require solution of complex differential equations5 ,6. 

Despite its assets, the network approach has not received the atention it deserves. 
Few attempts have been made to apply it to chemical reaction systems, where it can 
be fruitfully utilized 7 ,8. The aim of this paper was to demonstrate the utility of this 
approach in deriving information useful to the chemist. For this, network models 
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were set up for two typical chemical reaction systems, and expressions were obtained 
for their steady state reaction rates. It is shown that the rate equations match those 
obtained by chemical kinetics methods. 

Network Modelling of Chemical Reaction Systems 

In the case of a chemical reaction system, the conjugated flows and forces are the 
rates of change in the number of moles of each chemical species involved, J;, and the 
chemical potentials, I'i' respectively. Assuming that the number of moles of the i-th 
component in a mixture is a unique function of its chemical potential, the flow J i of 
the i-th species can be expressed as 

(1) 

Its analogy with the current-voltage relation for an electrical capacitor implies that 
in this case, the capacitance ')Ii is 

')Ii = dn;fdl'i . (2) 

Assuming the validity of the relation 

I'i = I'? + RTln Xi , (3) 

where Xi is the mole fraction of the i-th species and I'? is the reference chemical 
potential, Eq. (2) transforms into 

')Ii = n;fRT, (4) 

where R is the gas constant and Tthe absolute temperature. 
The capacitance ')Ii represents the pure storage aspect in a chemical process. Howe­

ver, another kind of chemical transaction, viz. energy dissipation, is also involved 
in any chemical reaction system. In network thermodynamics, dissipative effects are 
modelled by a resistor Rr • 

The flow of a chemical reaction J r is 

(5) 

where 81 is the stoichiometric coefficient of the i-th species. A comparison of Eqs (1) 
and (5) shows that the flow of the i-th chemical capacitor transformed into a reaction 
flow weighted by stoichiometry. Network representation of the reaction stoichio­
metry requires the use of a transformer (Fig. 10). An ideal two-port transformer is 
characterized by relations 

e2 = re1 

i2 = i l/r , 
(6) 

(7) 
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where r = m2/ml is a constant called the turns ratio. In our case the scaling factor r 
is 8 i . Thus, in the network representation a reactant and a product will be depicted 
as shown in Figs lb and Ie, respectively. 

While the lli'S and Ji's are the externally measurable port parameters, the reaction 
rate is an internal variable driven by an internal conjugated force, the affinity A" 
which is 

(8) 

When the reaction approaches its equilibrium, chemical kinetics shows that 

(9) 

where the phenomenological coefficient Lrr is given by 

Lrr = v/RT, (10) 

v being the reaction rate at equilibrium. Comparing Eq. (9) to Ohm's law we see 
that the coefficient Lrr plays the same role in a chemical process as the conductivity 
in a resistor. Thus, the magnitude of Rr can be expressed as 

Rr = l/Lrr = RT/v. (11) 

01 i, m,:mC2 i2 +1 

9, 9 2 

1- -I 
a 

b c 

FIG. 1 

Network representation of reaction stoichiometry 
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These ideal elements, Rr and 110 are sufficient to construct representations of the 
majority of chemical reaction systems. To illustrate how a network model is set up, 
let us consider several simple cases of chemical reactions. 

The simplest is the case of a chemical reaction which involves one substrate A and 
one reaction product B and is first order in both directions: 

kl 

A. • B 
k-l 

(A) 

(kl and k-l are the rate coefficients of conversion of A and B, respectively). As the 
reaction proceeds, the chemical potential of A decreases and that of B increases, 
and when the equilibrium is reached, the two chemical potentials are equal to each 
other. Taking into account the fact that a chemical reaction is a dissipative process, 
the situation can be represented by a network (Fig. 2) where capacitor B is charged 
by capacitor A through a resistive element. At equilibrium, the potentials at capacitor 
A and capacitor B are equal in magnitude. 

Applying Kirchhoff's voltage law to the network shown in Fig. 2, we can write 

(12) 

Comparing Eq. (9) with Eq. (12) we obtain 

(13) 

where [A] and [B] are the eqUilibrium concentrations of A and B, respectively. 
The situation is more complex for the chemical reaction 

1:1 
A + B t ~ C + D. (B) 

FIo.2 

Network representation of the reaction 
A~B 

a_I 

FIo.3 

Network representation of the reaction 
A+B~C+D 
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Based on the definitions (5) and (8), the reaction rate and affinity are obtained as 

(14) 

and 

(15) 

In view of its dissipative nature and with regard to Eqs (14) and (15), the network 
model for reaction (B) will be as shown in Fig. 3. In fact, Eqs (14) and (15) represent 
properties of a connection in series of the electrical elements. In this case, the resistive 
element value is 

Rr = RTjkl [A] [BJ = RTjk_l [C] [D] . (16) 

Last, let us consider the consecutive reaction 

kl k2 
A < ) B ( ) C. 

k-I k-2 
(C) 

Each step in this reaction will be represented by the circuit in Fig. 2, and each will 
have its own resistance, capacitances, reaction rates and affinities. The common 
element B indicates that the two circuits can be interconnected to form a network 
model for the consecutive reaction (C) (Fig. 4). Now the resistive elements are given by 

(17) 
and 

R2 = RTjk2 [BJ = RTjL2 [C] . (18) 

Network Analysis of Actual Chemical Reaction Systems 

The dynamical equations generated from the network representations can be 
employed to obtain chemical kinetic information. Two well-known cases of chemical 
reaction systems are treated in the following text. 

FIG. 4 

Network representation of the consecutive 
reaction A +t B +t C 
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The first is the decomposition of ozone. Following the Benson-Axworthy theory9, 

the reaction mechanism can be written in two steps: 

Step 1: 

(D) 
Step 2: 

(E) 

For setting up the network analogue, step 2 will be also regarded as a reversible 
reaction, 

kz 
.. ) 202 

k-z 
(E') 

although ultimately, in the final equation for the steady state reaction rate, the rate 
coefficient k _ 2 will be put equal to zero to obtain the expression for the situation 
where step 2 is irreversible. 

The mechanism is a generalization of the reaction (B); the network representations 
of reaction steps (D) and (E') are shown in Fig. 5. As has been pointed out, the two 
circuits can be interconnected through a common element. In this case, the common 
potential of capacitor 0 enables the chemical kinetic system (D), (E') to be represented 
as shown in Fig. 6. From this circuit it is clear that 

J 1 = (fLo, - fLo z - fLo)/R l 

J 2 = (fLo + fLo, - 2fLoJ/ Rz • 

At the steady state where J 1 = J 2 = Jss> the network in Fig. 6 gives 

(19) 

(20) 

(21) 

Using the definition of the chemical potential (Eq. (3», Eq. (21) can be written in 
the form 

J ss = 2fLg, - 3fLgz + RTln ([03]2/[02)3) . 
Rl + R2 

(22) 

According to classical thermodynamics, the reference affinity A? is 

A? = - L 9i fL? = RTln Keq , (23) 
i 

where Keq is the equilibrium constant of the reaction. Thus, in our case we can write 
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2jlg3 - 3jlg, = RTln Keq = RTln (k1kz!L1Lz). (24) 

Eq. (22) can be rewritten as 

J = RT.l { klkz[03J Z 
} 

ss n 3 • 
Rl + R z L1Lz[OzJ 

(25) 

Expanding the logarithm in the neighbourhood of equilibrium and neglecting the 
second and higher order terms we obtain 

J = RT(klkz[03]2 - L1L z [OzJ3) 
ss (Rl + Rz) L1Lz [OzJ3 . 

(26) 

The resistive elements Rl and R z can be evaluated in the same way as above in the 
analysis of reaction (A), viz. in terms of the rate coefficients and concentrations (cf. 
Eqs (12), (13)). Thus, 

Rl = RTfk 1 [03J [MJ = RTjL 1 [OzJ [OJ [MJ (27) 

(28) 

a b 

FIG. 5 

Network representations of reaction steps a (D) and b (£') 

FIG. 6 

Network model of the decomposition of ozone according to the Benson-Axworthy mechanism 
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Substituting for Rl and R2 in Eq. (26) we can write for the steady state reaction rate 

J ss = [M] (k 1k2 [03]2 - L 1L z[02J3). 
L 1[02] [M] + k 2 [03] 

If step 2 is irreversible «E') -+ (E», then L2 = 0 and Eq. (29) reduces to 

J = k 1k 2 [03]2 [M] 
ss L1[Oz] [M] + k 2 [03] 

This equation agrees with that obtained by chemical kinetics treatment lO • 

Finally, let us consider the reaction 

Hz + Brz = 2 HBr . 

(29) 

(30) 

(F) 

The mechanism of the reaction, proposed by Christiansen. Herzfeld and Polanyi10, 

involves the following steps: 

k! 
(G) Step 1: Br2 ( )- 2 Br 

k-! 

k2 
(H) Step 2: Br + H2 ( ... HBr + H 

k-2 

k3 
(1) Step 3: H + Br2 ~ HBr + Br. 

k-3 

Again, although actually irreversible, step 3 is written as reversible for the sake of 
construction of the network model, which is shown in Fig. 7; ultimately, the rate 
coefficient L 3 will be put equal to zero. 

+ 

P"T 
FIG. 7 

Network representation of the chemical reaction system (F) 
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From the circuit shown in Fig. 7, it is clear that the flow through the capacitor 
representing Br and H becomes zero at the steady state {l •• = J 1 = J 2 = J 3) and 
the steady rate can be written as 

(31) 

Following the procedure outlined in the preceding case (cf. Eqs (22)-(26», Eq. (31) 
can be transformed into 

J = !IT(klk2k3[Br2)2 [H2] - L t L 2L 3[Br)2 [HBr)2) (32) 
ss (Rl + R2 + R 3 ) LIL2L 3[Br]2 [HBr] . 

Now, the resistive elements can be written as 

Rl = RT/k1 [Br2] = RT/L t [Br]2 

R2 = RT/k2[Br] [H2] = RT/L 2 [HBr] [H] 

R3 = RT/k3[H] [Br2] = RT/L3[HBr] [Br] . 

At equilibrium the rates of the two opposing reactions are equal, and thus 

from which 

k3[H] [Br2] = k_ 3[HBr] [Br] 

k t [Br2] = L 1[Br2]2 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

The right-hand term, and hence also the left-hand term, is zero if the reaction (I) 
is irreversible (L3 = 0), whereupon Eq. (36) reduces to 

J = k2(k J /k_t)t/2 [H2] [Br2J1/2 

ss 1 + (L2[HBr]/k3[Br2]) 
(40) 

The rate equation (40) also agrees w;th that obtained by kinetic treatment lO • 
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In conclusion, the network thermodynamic method can be employed for a simple 
study of chemical reaction systems. For the two examples shown, the steady state 
rate equations could be derived avoiding complex mathematical treatment. An 
additional asset of this approach, apparent particularly in the case of extensive che­
mical reaction systems, consists in the possibility of computerizing the treatment 
using circuit simulation programs. 

Financial support from tlU? Comisi6n Interministerial de Ciencia y Tecnologia (CICYT), Espana, 
Project No. PB 87-882, is gratefully acknowledged. 

REFERENCES 

1. Peunser L.: Thesis. Harvard University, Harvard 1970; reprinted by Entropy, Ltd., Lincoln, 
MA 1987. 

2. Oster G. F., Perelson A, Katchalsky A.: Nature 234, 393 (1971). 
3. Oster G. F., Perelson A, Katchalsky A: Q. Rev. Biophys. 6, 1 (1973). 
4. Mikulecky D. c.: Am. J. Physio!. 245, RI (1983). 
5. Horno J., Gonzalez-Fernandez C. F., Hayas A, Gonzalez-Caballero F.: J. Membr. Sci. 

42, 1 1989). 
6. Horno J., Gonzalez-Fernandez C. F., Hayas A., Gonzalez-Caballero F.: Biophys. J. 55,527 

(1989). 
7. Yashonath S.: J. Phys. Chern. 85, 1808 (1981). 
8. Srivastava R. C.: J. Sci. Industr. Res. 42, 197 (1983). 
9. Benson S. W., Axworthy A. E.: J. Chern. Phys. 26, 1718 (1957). 

10. Laidler K. J.: Reaction Kinetics, Vo!' T, pp. 166, 158, 160. Pergamon Press, Oxford 1970. 

Translation refised by P. Adamek. 

Collect. Czech. Chem. Commun. (Vol. 54) (1989) 




